Tutorial Notes 7

1. f is in $C^{1}[a, b]$ and positive. Consider the curve $\gamma(t)=(t, f(t))$ and the force $F=$ $(y, 0)$. Prove that the work of F along γ is equal to the area of the region below the function f.

Solutions:

The work is

$$
\int_{a}^{b}(f(t), 0) \cdot\left(1, f^{\prime}(t)\right) \mathrm{d} t=\int_{a}^{b} f(t) \mathrm{d} t
$$

which is the area of the region below f.
2. A particle moves from $(a, f(a))$ to $(b, f(b))$. The force moving the particle has constant magnitude k and always points away from the origin. Show that the work done by the force is

$$
k\left[\left(b^{2}+f(b)^{2}\right)^{1 / 2}-\left(a^{2}+f(a)^{2}\right)^{1 / 2}\right] .
$$

Solutions:

Suppose that the arc-length parametrization of the path is $\gamma(s), 0 \leq s \leq L$. Then the force is $k \gamma(s)$ and the work is

$$
\int_{0}^{L} k \gamma(s) \cdot \dot{\gamma}(s) \mathrm{d} s=\left.k \frac{|\gamma(s)|^{2}}{2}\right|_{0} ^{L}=k\left[\left(b^{2}+f(b)^{2}\right)^{1 / 2}-\left(a^{2}+f(a)^{2}\right)^{1 / 2}\right] .
$$

3. Find the potential functions for the vector field

$$
\left(\frac{y}{1+x^{2} y^{2}}, \frac{x}{1+x^{2} y^{2}}+\frac{z}{\sqrt{1-y^{2} z^{2}}}, \frac{y}{\sqrt{1-y^{2} z^{2}}}+\frac{1}{z}\right) .
$$

Solutions:

We only need to solve the following equations:

$$
\begin{align*}
& \frac{\partial \varphi}{\partial x}=\frac{y}{1+x^{2} y^{2}} \tag{1a}\\
& \frac{\partial \varphi}{\partial y}=\frac{x}{1+x^{2} y^{2}}+\frac{z}{\sqrt{1-y^{2} z^{2}}} \tag{1b}\\
& \frac{\partial \varphi}{\partial z}=\frac{y}{\sqrt{1-y^{2} z^{2}}}+\frac{1}{z} \tag{1c}
\end{align*}
$$

By (1a),

$$
\varphi(x, y, z)=\arctan (x y)+f(y, z) .
$$

Substituting φ into (1b), it follows that

$$
f(y, z)=\arcsin (y z)+g(z) .
$$

Substituting φ into (1c), we have

$$
g(z)=\log z+C .
$$

Therefore,

$$
\varphi=\arctan (x y)+\arcsin (y z)+\log z+C .
$$

4. Show that the differential form in the following integral is exact and evaluate the integral:

$$
\int_{(1,0,0)}^{(0,1,1)}(\sin y \cos x \mathrm{~d} x+\cos y \sin x \mathrm{~d} y+\mathrm{d} z) .
$$

Solutions:

First we find the potential functions. It suffices to solve the following equations:

$$
\begin{align*}
& \frac{\partial \varphi}{\partial x}=\sin y \cos x \tag{2a}\\
& \frac{\partial \varphi}{\partial y}=\cos y \sin x \tag{2b}\\
& \frac{\partial \varphi}{\partial z}=1 \tag{2c}
\end{align*}
$$

By (2a),

$$
\varphi(x, y, z)=\sin y \sin x+f(y, z) .
$$

Substituting φ into (2b), it follows that

$$
f(y, z)=g(z) .
$$

Substituting φ into (2c), we have

$$
g(z)=z+C .
$$

Hence the potential functions are

$$
\sin y \sin x+z+C
$$

and the differential form in the integral is exact. Moreover, the integral is

$$
\left.(\sin y \sin x+z+C)\right|_{(0,1,1)} ^{(1,0,0)}=-1 .
$$

5. Find the potential functions for the vector field in the following integral and evaluate the integral:

$$
\int_{(1,2,1)}^{(2,1,1)}\left[(2 x \log y-y z) \mathrm{d} x+\left(\frac{x^{2}}{y}-x z\right) \mathrm{d} y-x y \mathrm{~d} z\right] .
$$

Solutions:

First we find the potential functions. It suffices to solve the following equations:

$$
\begin{align*}
& \frac{\partial \varphi}{\partial x}=2 x \log y-y z ; \tag{3a}\\
& \frac{\partial \varphi}{\partial y}=\frac{x^{2}}{y}-x z ; \tag{3b}\\
& \frac{\partial \varphi}{\partial z}=-x y . \tag{3c}
\end{align*}
$$

By (3a),

$$
\varphi(x, y, z)=x^{2} \log y-x y z+f(y, z) .
$$

Substituting φ into (3b), it follows that

$$
f(y, z)=g(z)
$$

Substituting φ into (3c), we have

$$
g(z)=C .
$$

Hence the potential functions are

$$
x^{2} \log y-x y z+C
$$

Moreover, the integral is

$$
\left.\left(x^{2} \log y-x y z+C\right)\right|_{(1,2,1)} ^{(2,1,1)}=-\log 2 .
$$

